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Abstract

In order to widen the application of statistical energy analysis (SEA), a reformulation is proposed.
Contrary to classical SEA, the model described here, statistical modal energy distribution analysis
(SmEdA), does not assume equipartition of modal energies.
Theoretical derivations are based on dual modal formulation described in Maxit and Guyader (Journal

of Sound and Vibration 239 (2001) 907) and Maxit (Ph.D. Thesis, Institut National des Sciences
Appliqu!ees de Lyon, France 2000) for the general case of coupled continuous elastic systems. Basic SEA
relations describing the power flow exchanged between two oscillators are used to obtain modal energy
equations. They permit modal energies of coupled subsystems to be determined from the knowledge of
modes of uncoupled subsystems. The link between SEA and SmEdA is established and make it possible to
mix the two approaches: SmEdA for subsystems where equipartition is not verified and SEA for other
subsystems.
Three typical configurations of structural couplings are described for which SmEdA improves energy

prediction compared to SEA: (a) coupling of subsystems with low modal overlap, (b) coupling of
heterogeneous subsystems, and (c) case of localized excitations.
The application of the proposed method is not limited to theoretical structures, but could easily be

applied to complex structures by using a finite element method (FEM). In this case, FEM are used to
calculate the modes of each uncoupled subsystems; these data are then used in a second step to determine
the modal coupling factors necessary for SmEdA to model the coupling.
r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Statistical energy analysis (SEA) [1–5] has been developed to predict noise and vibration
transmission through complex structures at medium and high frequencies. In SEA, the struc-
ture is subdivided into a number of subsystems and the vibration response within each sub-
system is characterized by the subsystem energy. Derivation of SEA is based on several
assumptions (see Ref. [6]), and its range of validity is not easy to establish although many
studies have addressed this issue [7–29]. A number of cases where SEA is not a good predictor
will be discussed.
Yap and Woodhouse [7] studied the influence of damping on the quality of SEA results.

Equivalent coupling loss factor (CLF) was obtained from numerical simulations on beam and
plate coupling, which were shown to depend strongly on damping, whereas CLF obtained
classically by the wave approach were independent of damping. For weakly damped system,
equivalent CLFs are proportional to damping loss factors (DLF), and values are lower than those
given by the wave approach; i.e., the wave approach appears to overestimate the energy transfer.
The authors attributed the strong dependency to damping to the fact that energy equipartition
does not hold when damping is low.
For three plates coupled in a U shape, Fredo [8] showed that indirect coupling between the first

and third plate can be significant if damping is weak. The indirect coupling was attributed to the
inaccuracy of one or more SEA assumptions. Previously, Finnveden had shown in the case of
three coupled elements [9] that SEA seriously overestimates the flow of energy when damping loss
factors are small.
The coupling of two irregular plates has been studied by Mace et al. [10,11]. For strong

damping, the response is independent of the shape of the plate and the wave estimate of CLF gives
accurate predictions. Contrary to weak damping, the transmission depends significantly on the
specific geometry of each plate and the power transmitted is often substantially less than that
predicted by SEA.
Ming and Pan studied the accuracy of SEA results on coupled plates [12]. They observed that

two parameters influence the quality result: the geometric mean of the modal overlap factors and
the number of resonant modes in the frequency band of interest. At low frequency, where there
are few modes, SEA results are poor and exact results are highly sensitivite to the position of the
excitation point. Increasing frequency, modal overlap factors and mode numbers increase when
SEA results are better and sensitivity to the position of excitation decreases (see also Ref. [13]).
Previous work by Fahy and Mohammed [14] on beam–plate coupling gave similar conclusions.
When the modal overlap factor is much less than unity, SEA overestimates energy transfer. From
analytical calculations of the power exchanged by two coupled one-dimensional subsystems,
Mace [15,16] suggested that the g parameter could characterize the coupling strength. This
parameter is defined as the ratio of the transmission factor to the product of the two modal
overlap in both connected subsystem. When g is small, the coupling is called weak, i.e., classical
SEA is valid. Finnveden [17,18] deduced the same coupling strength criterion by investigating the
ensemble averaged power flow in a three elements structure.
It can be concluded that it is difficult to predict energy transfer when SEA assumptions are not

verified in at least one subsystem. The key point of the present study was refining SEA, based on
less restrictive assumptions.
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Langley [19,20] proposed an extension of SEA called wave intensity analysis (WIA). Classical
SEA assumed that the vibrational wavefield in each subsystem is diffuse. In some cases (not
explicitly defined by the author), this assumption cannot be fulfilled which means that SEA yields
poor estimates of vibrational responses. In WIA, the directional dependency of the vibrational
wavefield in each subsystem is derived using Fourier series. When only the first term of the Fourier
series is considered, WIA is equivalent to SEA. Adding terms in the series improves predictions
for plate assemblies [19–22].
The study presented in this paper is also based on the reformulation of SEA with less restrictive

assumptions. The goal is to extend the validity of the model to cases where classical SEA was seen
to be unsatisfactory. The assumption that one wishes to remove in this paper is equipartition of
energy. The approach, based on the dual modal formulation proposed in Refs. [1,2], takes into
account the modal energies distribution of each subsystem. The present model is called statistical
modal energy distribution analysis (SmEdA) and can be seen as a refinement of traditional SEA.

2. Dual modal formulation

The dual modal formulation described in Ref. [1] for the general case of coupled continuous
elastic systems is based on a dual displacement–stress formulation and two kinds of subsystem
modes: uncoupled-free modes and uncoupled-blocked modes. The results which constitute the
base of SmEdA model are summarized here. (For more details, see Refs. [1,2].)

2.1. Coupling of two continuous mechanical systems

Two elastic continuous mechanical sub systems are considered which are rigidly coupled on a
surface SCoupling as shown in Fig. 1. Both systems are excited by random, ergodic excitations of
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Fig. 1. Coupling of two continuum mechanical systems.
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band-limited white-noise type and the material of each subsystem is supposed to be linear elastic
and to have viscous damping.
Subsystem 1 is described by displacement vector WiðM; tÞ and subsystem 2 by stress tensor

sijðM 0; tÞ where i and j=1,2,3, t is time, and M, M0) denote points of subsystem 1 and subsystem
2, respectively. According to the dual modal formulation, subsystem 1 is described by modes of
the uncoupled-free subsystem (null stresses on SCoupling) and subsystem 2 by modes of the
uncoupled-blocked subsystem (null displacements on SCoupling). (see Fig. 2).
Expanding displacements of subsystem 1 and stresses of subsystem 2, and assuming responses

controlled by resonant contributions, gives

WiðM; tÞ ¼
XN1

n¼1

anðtÞ *Wn
i ðMÞ; ð1Þ

sij M 0; t
� �

¼
XN2

s¼1

bsðtÞ *ss
ijðM

0Þ; ð2Þ

where: anðtÞ; bsðtÞ are modal amplitudes for subsystem 1 and subsystem 2, respectively; *Wn
i ðMÞ are

displacement mode shapes of subsystem 1; *ss
ijðM

0Þ are stress mode shapes of subsystem 2; and N1,
N2 are the number of resonant modes of subsystem 1 and subsystem 2, respectively.
With the change of modal variable,

bqðtÞ ¼ ’cqðtÞ; ð3Þ

the modal equations given by the dual modal formulation (see Ref. [1]) are

.apðtÞ þ Dp ’apðtÞ þ ðopÞ
2apðtÞ þ

1

Mp

XN2

m¼1

’cmðtÞWpm ¼
Fp

Mp

; 8pA 1; y; N1½ �; ð4Þ

.cqðtÞ þ Dq ’cqðtÞ þ ðoqÞ
2cqðtÞ 	

1

ðoqÞ
2Mq

XN1

r¼1

’arðtÞWrq ¼
Fq

ðoqÞ
2Mq

; 8qA 1; y; N2½ �; ð5Þ
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Fig. 2. Representation of the uncoupled subsystems: (a) uncoupled-free subsystem 1; (b) Uncoupled-blocked sub-

system 2.
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where: Dp; Dq are modal damping bandwidths of each subsystem; op; oq are natural angular
frequencies of uncoupled subsystems; Mp; Mq are modal masses; Fp; Fq are generalized modal
forces; and Wpq are interaction modal works yielded for each couple of modes (p,q) by

Wpq ¼
Z

SCoupling

*W
p
i *sq

ij n2j dS ð6Þ

and n2j are components of the outer normal vector of the volume occupied by subsystem 2.
This system of equations describes the forced response of the coupled subsystems from the

amplitudes of modes of the uncoupled subsystems.
The form of these equations allows us to interpret modes interactions as oscillators with

gyroscopic couplings (see Fig. 3). Note that a mode of one subsystem is coupled to the modes of
the other subsystem but is not directly coupled with the other modes of the subsystem to which it
belongs. This configuration of mode coupling is exactly the one that supposes SEA.

3. Reformulation of SEA model without equipartition assumption

This section aims to reformulate the SEA model without taking into account equipartition of
energy.

3.1. Modal energy equations

Consider mode p of subsystem 1. Its equation of motion is given in Eq. (4). The principle of
conservation of energy applied to this mode gives

Pp
inj ¼ Pp

diss þ
XN2

q¼1

Ppq; 8pA 1; y; N1½ �; ð7Þ

where Pp
inj is time-averaged injected power by the generalized force Fp; P

p
diss is time-averaged

dissipated power by internal damping of mode p; and
PN2

q¼1Ppq is time-averaged power flow
exchanged by mode p with the modes of subsystem 2.
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Fig. 3. Illustration of the interaction between N1 modes of subsystem 1 and N2 modes of subsystem 2.
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The injected power into mode p by external excitation is either dissipated by internal damping
of the mode or exchanged with modes of subsystem 2. The different powers appearing in this
equation are estimated as follows:
Evaluating Pp

inj from the power injected relation established for an oscillator excited by a white
noise force [2] gives

Pp
inj ¼

p
4Mp

%SFp
; ð8Þ

where %SFp
is the power spectral density of the generalized force expressed in N2/rad/s.

The power dissipated by internal damping of an oscillator (see Ref. [5]) can be related to its
total energy by:

Pp
diss ¼ opZpEp; ð9Þ

where Ep is the time-averaged energy of mode p, and Zp is the modal damping factor (Dp ¼ opZp).
To evaluate the power exchanged by mode p of subsystem 1 with mode q of subsystem 2, these

two modes are isolated in the modal equations of motion (4) and (5):

.apðtÞ þ Dp ’apðtÞ þ ðopÞ
2apðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðopÞ

2Mq

Mp

s
gpq ’cqðtÞ ¼ L1pqðtÞ; 8ðp; qÞAð½1;N1�; ½1;N2�Þ; ð10Þ

.cqðtÞ þ Dq ’cqðtÞ þ ðoqÞ
2cqðtÞ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mp

ðoqÞ
2Mq

s
gpq ’apðtÞ ¼ L2qpðtÞ; ð11Þ

where

L1pqðtÞ ¼
FpðtÞ
Mp

	
XN2

r¼1
raq

Wpr

Mp
’crðtÞ L2qpðtÞ ¼

FqðtÞ

ðoqÞ
2Mq

þ
XN1

m¼1
map

Wmq

ðoqÞ
2Mq

’amðtÞ

and

gpq ¼
Wpqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MpðoqÞ
2Mq

q :

Supposing, as classically done in SEA, that the interaction forces L1pqðtÞ and L2qpðtÞ are
uncorrelated white-noise forces, the basic SEA relation established by Scharton and Lyon [30] can
be used:

Ppq ¼ ocZpqðEp 	 EqÞ; ð12Þ

where oc is the central angular frequency of the band of interest, and Zpq is called the modal
coupling loss factor (see Ref. [1]). It is a function of natural angular frequencies, op; oq; modal
masses, Mp; Mq; modal bandwidths, Dp; Dq; and interaction modal works, Wpq:

Zpq ¼
ðWpqÞ

2

ocMpðoqÞ
2Mq

ðDpðoqÞ
2 þ DqðopÞ

2Þ

ððopÞ
2 	 ðoqÞ

2Þ2 þ ðDp þ DqÞðDpðoqÞ
2 þ DqðopÞ

2Þ

 !
: ð13Þ
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Introducing Eqs. (8), (9), and (12) into Eq. (7), gives the power balance Eq. (14) for mode p of
subsystem 1:

Pp
inj ¼ opZpEp þ

XN2

q¼1

ocZpqðEp 	 EqÞ; 8pA 1; y; N1½ �: ð14Þ

In the same way, energy balance equation of mode q of subsystem 2 can be written as

Pp
inj ¼ opZpEp þ

XN2

p¼1

ocZpqðEp 	 EqÞ; 8qA 1; y; N2½ �: ð15Þ

Relations (14) and (15) constitute a linear system of modal energies of subsystems 1 and 2:

Pp
inj ¼ opZp þ

XN2

q¼1

ocZpq

 !
Ep;	

XN2

q¼1

ocZpqEq; 8pA 1; y; N1½ �;

Pq
inj ¼ 	

XN1

p¼1

ocZpqEp þ oqZq þ
XN1

p¼1

ocZpq

 !
Eq; 8qA 1; y; N2½ �: ð16Þ

The total energy of each subsystem can be finally obtained by adding modal energies

E1 ¼
XN1

p¼1

Ep; E2 ¼
XN2

q¼1

Eq; ð17Þ

where E1 and E2 are the time-averaged total energies of subsystem 1 and 2 respectively.
The model attached to the modal energy equations (16) is called SmEdA. The application of

this model is not limited to theoretical structures, but can be applied to complex structures by
using finite element method (FEM). As described in Refs. [1,31] to evaluate CLFs, FEM can be
used to calculate the uncoupled subsystem modes which allow the modal coupling loss factors to
be determined.
In the next Section, the link between SmEdA and SEA will be established.

3.2. Relations between SEA and SmEdA

In classical SEA, modal energy equipartition is assumed and allows the N1 degree of freedom
(d.o.f.) of subsystem 1 and the N2 d.o.f. of subsystem 2 to be restricted to only two d.o.f., one per
subsystem. Introducing equipartition relation (18),

Ep ¼
E1

N1
; 8pA 1; N1½ �;

Eq ¼
E2

N2
; 8qA 1; N2½ �; ð18Þ
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in the modal energy equations (16) and adding for each subsystem, mode energy balance
equations, gives the standard SEA equation (19):

P1
inj ¼ocZ1E1 þ ocZ12 E1 	

N1

N2
E2

� �
;

P2
inj ¼ocZ2E2 þ ocZ12

N1

N2
E2 	 E1

� �
; ð19Þ

where P1
inj ¼

PN1

p¼1P
p
inj ðresp:P

2
inj ¼

PN2

q¼1P
q
injÞ represents the power injected by external sources

in subsystem 1 (resp. subsystem 2), and, Z12 is the SEA coupling loss factor given by

Z12 ¼
1

N1

XN1

p¼1

XN2

q¼1

Zpq: ð20Þ

In some practical applications, the equipartition assumption can be fulfilled by some subsystems
but not by the others. In these situations, it will be interesting to mix SEA and SmEdA, classical
SEA being used for subsystems where equipartition is valid and SmEdA for the others. To
examine this point, consider the case of two subsystems, and assume equipartition is valid for
subsystem 1 and not for subsystem 2; Eq. (16) becomes:

P1
inj ¼ ocðZ1 þ Z12ÞE1 	 oc

XN2

q¼1

XN1

p¼1

Zpq

 !
Eq; ð21Þ

Pq
inj ¼ 	

oc

N1

XN1

p¼1

Zpq

 !
E1 þ oqZq þ oc

XN1

p¼1

Zpq

 !
Eq; 8qA 1; y; N2½ �: ð22Þ

The unknowns of these equations are the total energy of subsystem 1 and the N2 modal energies of
subsystem 2. It is thus possible to apply SmEdA only for the subsystem where equipartition is not
achieved, and to use classical SEA for the other subsystem (application to four coupled plates is
proposed in Ref. [32]).

4. Some examples

Three typical cases where equipartition is not achieved are shown in this Section: (a) coupling of
subsystems with low modal overlap; (b) coupling of heterogeneous subsystems; (c) the case of
localized excitation.
The following examples are based on beam and plate couplings in order to simplify the

calculation. However, it should not be seen as limiting the approach; the application to
complicated subsystems could be achieved, thanks to finite element models, in a straight forward
manner.
In the following SmEdA denotes the present approach; SEADMF denote the SEA approach

considering CLFs estimated by Eq. (13), i.e., the dual modal formulation; and SEAwave denotes
the SEA approach considering CLFs estimated by the classical wave approach (see Ref. [3]).
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4.1. Coupling of subsystems with low modal overlap

4.1.1. Two subsystems
Two pinned–pinned beams coupled rigidly at one end, as shown in Fig. 4, are considred. La, ba,

ha, Ea, ra are, respectively, length, width, thickness, Young’s modulus, and mass density of beam
a. The subsystem boundary conditions are simply supported at both ends for beam 1 and clamped
simply supported for beam 2. Rigid coupling is assumed (that is to say continuity of angular
rotations and flexural moments) and thus the interaction modal works Wpq are expressed by

Wpq ¼ *yp
z
*M

q

f ; ð23Þ

where: *yp
z is the pth mode angular rotation at the junction for beam 1, and *M

q

f is the qth mode
bending moment at the junction for beam 2.
In the following, only beam 1 is excited in the normalized octave band of central frequency

1000Hz. The driving force is of a ‘rain on the roof’ type, and thus, power spectral densities of
generalized forces (see Eq. (8)) are constant whatever the modes. In order to compare with
classical calculations, solution based on wave decomposition for pure tone excitation was used,
then frequency averaging of energy was done. Lastly, to approximate to rain on the roof
excitation, beam energies obtained for 20 excitation points randomly distributed over beam 1 were
averaged.
Beam lengths were chosen to have sufficient modes resonant in the excited band (10 modes for

beam 1 and nine modes for beam 2).
Fig. 5 shows beam energies ratio E2/E1 versus geometric mean modal overlap. The geometric

mean modal overlap factor %M is given by

%M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
; ð24Þ

where: Ma is beam a modal overlap: Ma ¼ ocZana; aA 1; 2½ �; oc is the central angular frequency of
the excited beam; Za is the damping loss factor, and na is the modal density of beam a (see Ref.
[3]).
SmEdA results agree with classical calculation for any geometric mean modal overlap whereas

SEADMF gives poor estimates when %Mo0:1: It can also be seen that SEAwave gives approximately
the same results as SEADMF.
The poor prediction of SEADMF suggests that equipartition is not achieved when modal

overlap is weak. This point is confirmed in Fig. 6 where the distribution of modal energies of the
non-excited beam is presented for four different values of the geometric mean modal overlap. For
the highest value, equipartition is quite fulfilled explaining that SEADMF gives good results. For
the lowest value (Fig. 6(a)), there is a large disparity between modal energies: the fourth mode in
the frequency band considered largely dominates the response. In this case, SEADMF gives poor
results. However, strong disparities of modal energies do not lead systematically to a poor
estimation of energies by SEA. Comparing Figs. 6(a) and (b), disparities of modal energies are
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Fig. 4. Illustration of the rigid-coupled beams.

L. Maxit, J.-L. Guyader / Journal of Sound and Vibration 265 (2003) 337–358 345



similar but SEA results are very different in the two cases: through the middle in (b), but through
the peak in (a). In case (a), SEA overestimates largely energy transfer; whereas in case (b), SEA
prediction is reasonably good (see Fig. 5).
Modal energy disparities are due to frequency coincidence that has a significant role in the

modal couplings when modal overlap factors are less than one (see expression (13)); some modes
can be strongly coupled whereas other ones are much less. Fig. 7 shows where modal coupling loss
factors are plotted. When damping is low (Fig. 7(a)), the coupling between the two beams are
dominated by the interaction between the fourth mode of beam 1 and the fourth mode of beam 2
(due to close natural frequencies); then equipartition is not achieved (see Fig. 6(a)). On the other
hand, when the mean geometric modal overlap factor is equal or greater than one (see Figs. 7 (c)
and (d)), all modes of beam 2 are strongly coupled to at least one mode of beam 1, and in this case
equipartition is achieved (see Fig. 6 (c) and (d)).
Several studies [7,12,14,29] have shown, as can be seen here, that classical SEA overestimates

the energy transfer between subsystems when modal overlap factors are much less than one. The
present results demonstrate that, in this case, modal equipartition is not fulfilled and is responsible
of the poor prediction of SEA. This was previously mentioned in Ref. [7].
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Fig. 5. Beam energy ratio, E2/E1, versus the geometric mean of the modal overlap factors,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
(octave band

1000 hz). Comparison of four calculations: x, exact; —, SmEdA; —, SEADMF; *, SEAwave. L1=2.4m, L2=1.2m,

b1=b2=0.01m, h1=3mm, h2=1mm, E1=E2=7
 10
10 Pa, r1=r2=2700 kg/m

3, N1=10 modes, N2=9 modes.
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The g factor was proposed separately by Mace [16] and Finnveden [17] as an indicator of the
coupling strength of two subsystems. When g is much less than one, the coupling between two
subsystems is called weak, i.e. classical SEA is valid and

g ¼
t12

2p2M1M2
; ð25Þ

where t12 is the transmission factor.
Table 1 presents the g factor (25) for different cases treated in Fig. 5. It can be observed that

this criterion confirms the validity of SEA; namely when g > 1; SEAwave fails, but SmEdA
still allows the energy flow to be predicted and appears to be alternative to SEA for strong
coupling.
Another example based on plate coupling was presented in Ref. [2]. Because the coupling effects

are distributed along a line, spatial coincidence of mode shapes has a significant role and can lead
several modes of the non-excited subsystem to be uncoupled from modes of the excited subsystem.
This increases the disparity of the distribution of modal energies, SEA can then overestimate
energy transfer even if geometric mean modal overlap is equal or greater than one, whereas
SmEdA gives good results.
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Fig. 6. Modal energy distribution of the receiving beam (dB, ref. 10	12 joule). Resonant modes classified with

increasing natural frequencies. Four cases: (a) %M ¼ 7:9
 10	3; (b) %M ¼ 0:09; (c) %M ¼ 0:18; (d) %M ¼ 1:43: Two
calculations: -o-o-, SmEdA; 	+

	
+
	 , SEADMF.
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4.1.2. Multiple subsystems

Now, consider a structure composed of seven pinned–pinned beams coupled rigidly in a chain
as shown Fig. 8. At each junction, simple supports are introduced in order to simplify subsystems
modes calculations. This also produces very large overall attenuation that demonstrates clearly
the difference of predictions between SEA and SmEdA.
In the following, rain on the roof excitation is applied on beam 1 and each beam has a damping

loss factor of 0.1% (Z ¼ 0:001); that is to say the modal overlap factor is less than unity (geometric
mean modal overlap factor, %M ¼ 0:0125).
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Fig. 7. Modal coupling loss factors, Zpq: (Modes classified with increasing natural frequencies.) Same cases than the
previous figure: (a) %M ¼ 7:9
 10	3; (b) %M ¼ 0:09; (c) %M ¼ 0:18; (d) %M ¼ 1:43:

Table 1
%M; geometric mean modal overlap factor; Z, damping loss factor; g, gamma factor. Values for different cases of Fig. 5

%M 0.0079 0.016 0.032 0.063 0.127 0.254 0.508 1.016 2.032

Z 0.0005 0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128

g 91.1 22.77 5.69 1.42 0.35 0.09 0.02 0.01 0.002

Fig. 8. Schematic representation of the seven rigidly coupled beams. Rain on the roof excitation on beam 1. L1=2.4m,

L2=1.2m, L3=2.2m, L4=1.4m, L5=2m, L6=1.2m, L7=2.3m, h1=3mm, h2=1mm, h3=4mm, h4=1.2mm,

h5=2mm, h6=0.8mm, h7=3.5mm, ba=0.01m, Ea=7
 10
10 Pa, ra=2700kg/m

3, Za=0.001 (aA[1,7]).
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The SmEdA model has been constructed when this structure is decomposed into seven
subsystems. The boundary conditions used to extract the uncoupled subsystems modes are
clamped–clamped for beams 2, 4 and 6 (blocked subsystems), and pinned–pinned for beams 1, 3, 5
and 7 (free subsystems).
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Fig. 9. Modal energy distributions of the seven beams in the case of weak modal overlap: Za ¼ 0:001 (aA[1,7]). Octave
band of central frequency 1000Hz. Two calculations: -o-o-, SmEdA; 	+

	
+
	 , SEADMF.

Fig. 10. Modal energy distributions of the seven beams in the case of geometric mean modal overlap factors equal to

one (octave band of central frequency 1000Hz). Two calculations: -o-o-, SmEdA; 	+
	
+
	 , SEADMF.
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Fig. 9 presents modal energies distributions in beams. The main tendency that appears is an
increase of beam modal energies disparities, subsystem after subsystem. Then, the equipartition
assumption lead to gross overestimates of energy transmission far from the excited beam (see also
Ref. [7]).
The disparities come from resonance frequency coincidences that render one modal interaction

dominant. Of course, the probability of having the phenomena increases with the number of
coupled subsystems. In the case of high modal overlap, this effect no longer has a significant role
and as shown in Fig. 10 equipartition of modal energy is achieved.

4.2. Heterogeneous subsystems

Classical SEA assumes a vibratory diffuse wave field in each subsystem [19], when SEA
substructuring should be used. However, for industrial structures such as panel stiffened by spars
and stringers, it is not possible to have a diffuse field because of heterogeneity. The assumption of
the diffuse field of the wave approach can be related to the equipartition assumption of the modal
approach. Because SmEdA does not assume equipartition, one can expect it can be used for
heterogeneous structures. To make this point clear four Euler–Bernoulli beams coupled rigidly at
each end with an intermediary support (see Fig. 11) are studied. The external ends are simply
supported for beam 1 and clamped for beam 4. Beam 1 is excited by rain ‘on the roof’ excitation.
The substructuring which is considered is shown in Fig. 11: beams 1 and 4 are independant

subsystems (subsystems 1 and 3, respectively), whereas beams 2 and 3 constitute a single non-
homogeneous subsystem (subsystem 2).
Although analytic modal extraction can be performed, the finite elements method was used to

calculate the modal information of each subsystem. Modal coupling loss factors are obtained by
the technique used in Ref. [1] to calculate coupling loss factors from FEM data. The modal
information for each mode is eigenfrequency, generalized mass and mode shape at the coupling
ends in terms of nodal displacement for free junctions and of nodal force for blocked junctions.
Expression (80) of Ref. [1] is used to calculate interaction modal works, and then Eq. (13) used to
calculate modal coupling loss factors.
For the octave band of central frequency 1000Hz, the energy ratio between the receiving beam

4 and the excited beam 1 is equal to 	36.3 dB using SmEdA and 	24.0 dB using SEA whereas a
reference energy ratio obtained by FE numerical experiments (see Ref. [31]) is 	38.3 dB. SEA

ARTICLE IN PRESS

Fig. 11. (a) Illustration of the four coupled beams; (b) Substructuring. Beams’ characteristics: L1=2.4m, L2=1.2m,

L3=2.2m, L4=1.4m, h1=3mm, h2=1mm, h3=5mm, h4=1.2mm, ba=0.01m, Ea=7
 10
10 Pa, ra=2700 kg/m

3,

Za=0.01 (aA[1,4]).
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gives an error of 14.3 ds whereas SmEdA gives an accurate prediction. This can be explained again
by observing the modal energies distribution of subsystem 2 (Fig. 12) where important variations
can be seen on the modal distribution. SEA is not able to describe these variations, and it
overestimates the energy transfer between subsystems 2 and 3. The heterogeneity of subsystem 2
produces local modes, as illustrated in Fig. 13. The mode shapes act on the modal coupling loss
factors via the interaction modal factors. The difference of mode shape amplitudes at each end of
the subsystem implies that the mode is lightly coupled with modes of the right subsystem and
strongly coupled with those of the left subsystem (or vice versa). This introduces a strong disparity
of mode energies which can only be taken into account by considering each mode independently.
This explains why SEA fails and SmEdA gives good results. In this specific demonstration case, it
can be argued, however, that intuitively, one would actually choose four SEA elements for the
analysis, and such a choice would give similar good agreement for beam 4, namely 	34.3 dB.

4.3. Case of localized excitation

In Sections 4.1 and 4.2, the external sources were of the rain on the roof type. This excitation is
considered in SEA because it produces decorrelation of generalized forces and thus modal
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Fig. 12. Modal energy distribution of subsystem 2 (dB, ref. 10	12 joule) . Modes classified with increasing natural

frequencies. SmEdA results.
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energies equipartition for the excited subsystem (see Ref. [23]). However, in practical situations,
sources cannot always be assimilated to rain on the roof excitation, leading to difficulty in using
SEA, unlike to SmEdA.

ARTICLE IN PRESS

Fig. 13. Examples of displacement mode shapes for subsystem 2: (a) mode 1 of the previous figure; (b) mode 2 of the

previous figure.

Fig. 14. Two plates coupled in an L-shape and excited by a point force Fi on plate 1: a1=1.7m, a2=0.8m, b=1m,

h1=6mm, h2=3mm, E1=E2=2
 10
11 Pa, r1=r2=7800 kg/m

3, Z1=Z2=0.01.
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Consider two thin steel plates coupled in an L shape. Plate 1 is excited by one white-noise point
force. Each plate is simply supported on non-coupled edges and flexural motions are considered
(see Fig. 14).
Let plate 2 be thinner than plate 1. Then, according to DMF, plate 1 is described by free modes

at junction and plate 2 by blocked modes. This modal information is given in Appendix A. The
interaction modal work between mode (m,n) of plate 1 and mode (r,s) of plate 2 is

Wmn;rs ¼

E2bh32kr

12ð1	 n22Þ
mp
a1

� �
sp
b

� �2
sin

sp
b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr þ 1

p� �
; if n ¼ s;

0; if nas

8><
>: ð26Þ
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Table 2

(xi, yi) co-ordinates of point excitation i

i 1 2 3 4 5 6 7 8 9 10 11 12

xi (m) 0.65 0.14 1.11 0.96 0.50 1.30 0.36 1.49 1.26 0.30 0.84 1.50

yi (m) 0.75 0.73 0.55 0.63 0.21 0.65 0.06 0.24 0.62 0.80 0.40 0.50

Fig. 15. Total energy ratio for each excitation point. Third octave band of central frequency 1000Hz. Comparison of

three calculations: o, reference obtained from DMF with non-resonant modes; —, SmEdA; - - - -, SEA.
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where: aa, b, ha, Ea, na are, respectively, longitudinal length, length of the common edge, thickness,
Young modulus, and the Poisson ratio for plate a, a ¼ 1; 2; and kr is a modal parameter given in
Appendix A.
It can be seen that the interaction modal work (26) is zero for pairs of modes which do not have

the same index on the common edge (nas).
The power injected by the driving force located at point (xi,yi) in mode (m,n) of plate 1 is

Pmn
inj ¼

pSf

r1h1a1b
sin

mp
a1

xi

� �
sin

np
b

yi

� �� �2
; ð27Þ

where Sf is the power spectral density of force for the frequency band of interest (N
2/(rad/s)), and

r1 is mass density of plate 1.
The modal injected power can vary strongly from one mode to another, contrary to the case of

rain on the roof excitation.
SmEdA application used Eq. (27) to evaluate modal input power. Twelve different excitation

positions were studied; their co-ordinates are given in Table 2. Fig. 15 shows the plates energies
ratio, for excitation in the third octave band of centre frequency 1000Hz. A good agreement can
be seen between SmEdA and reference results (obtained by DMF calculation taking into account
modes belonging to the octave band of centre frequency 1000Hz). This is due to the variation of
modal energies as is clearly demonstrated in Fig. 16. The variation of modal injected power
introduced a variation of modal energy in the excited plate that was accentuated by a modal
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Fig. 16. Modal energy distributions for excitation case number 7 (dB, ref. 10	12 joule): (a) plate 1, (b) plate 2. Modes

classified with increasing natural frequencies.
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coupling filtering effect for the modal energy distribution in plate 2: in the excited band, 20
resonant modes contribute to vibrations for plate 1 and 17 for plate 2, but due to null interaction
modal work only nine modes of plate 2 are significantly excited.

5. Conclusions

This paper presents a reformulation of SEA taking modal energy distribution into account. The
necessary data to build the model include modal information for each uncoupled subsystem:
natural frequencies, modal masses, modal damping and mode shapes on the coupling boundaries.
FEMs can be used to calculate modal information in the cases of complex subsystems that allow
this technique to be applied to industrial structures. The results are given in terms of modal
energies which can be added to calculate subsystem energies.
The use of the SmEdA techniques has been demonstrated on some simple examples.
The coupling of subsystems with low modal overlap factors which has been widely discussed in

the literature can be solved by SmEdA. In this case, the modal energy distribution is non-uniform
due to the effect of frequency and space coincidences.
Energies can be predicted by SmEdA for heterogeneous subsystems which are of great interest

when dealing with industrial structures.
Localized excitation can lead to important variations in the modal energies distribution of the

excited subsystem which cannot be described by classical SEA. A coupled plates example has
shown that SmEdA can correctly predict the effect of source position.
Finally, SmEdA can easily be combined with classical SEA, in order to calculate energy

distribution only in subsystems where it is necessary, and use SEA for others subsystems. To
apply SEA to coupled subsystems necessitates that all subsystems verify SEA assumption. This is
very restrictive for industrial practical application because some subsystems are highly
heterogeneous, locally excited or have weak modal overlap. In this case, the coupling of SmEdA
for these subsystems with SEA for others allows the problem is to be solved. Of course, the use of
SmEdA necessitates the calculation of the uncoupled subsystem modes, but this is only required
for these particular subsystems for which SmEdA is useful.
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Appendix A. Modal information for the L-shaped plates

The structure and the co-ordinate systems are shown in Fig. 14. In accordance with DMF, plate
1 is described by modes of the uncoupled - free subsystem and plate 2 by modes of the uncoupled-
blocked subsystem. Thus, the modal information of plate 1 are obtained by considering the plate
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simply supported on its four edges:

omn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21E1

12ð1	 n21Þr1

s
mp
a1

� �2
þ

np
b

� �2 !
; ðA:1Þ

Mmn ¼
r1h1a1b1

4
; ðA:2Þ

*Wmnðx1; y1Þ ¼ sin
mp
a2

x1

� �
sin

np
b

y1

� �
; ðA:3Þ

and those of plate 2 by considering the plate clamped on the coupling edge x2 ¼ 0 and simply
supported on the others edges (see the technique of calculation in Ref. [33, pp. 84–85]:

ors ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h22E2

12ð1	 n22Þr2

s
sp
b

� �2
kr with kr=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr 	 1

p
tanh

b

a2
sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr þ 1

p� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr þ 1

p
tanh

b

a2
sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr 	 1

p� �
;

Mrs ¼
Z a2

0

Z b

0

r2h2ð *Wrsðx2; y2ÞÞ
2 dy2 dx2; ðA:4Þ

*srs
xxðx2; y2Þ ¼ 	

E2

1	 n22

@2 *Wrs

@x22
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n2E2
1	 n22

@2 *Wrs

@y22
ðx2; y2Þ;
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n2E2
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666666664
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66664

3
77775;
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where *Wmn is the displacement mode shapes of plate 1 and *srs
xx; *s

rs
yy; *s

rs
xy are the stress mode shapes

of plate 2.
For the case of two plates coupled in an L-shape, the interaction modal work between the mode

(m,n) of plate 1 and the modes (r,s) of plate 2 is given by

Wmn;rs ¼
bh32
12

Z b

0

@ *Wmn

@x1
ða1; yÞ *srs

xxð0; yÞ dy; ðA:7Þ
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and can be rewritten by using the mode shapes (A.3), (A.6):

Wmn;rs ¼

E2bh32kr

12ð1	 n22Þ
mp
a1

� �
sp
b

� �2
sin

sp
b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr þ 1

p� �
; if n ¼ s;

0; if nas;

8><
>: ðA:8Þ

References

[1] L. Maxit, J.-L. Guyader, Estimation of SEA coupling loss factors using a dual formulation and FEM modal

information Part 1: theory Part 2: numerical applications, Journal of Sound and Vibration 239 (2001) 907–948.

[2] L. Maxit, Extension et reformulation du mod"ele SEA par la prise en compte de la r!epartition des !energies modales,

Ph.D.Thesis, Institut National des Sciences Appliqu!ees de Lyon, France, 2000.

[3] R.H. Lyon, R.G. Dejong, Theory and Application of Statistical Energy Analysis, Butterworth, London, 1995.

[4] C.B. Burroughs, R.W. Fischer, F.R. Kern, An introduction to statistical energy analysis, The Journal of the

Acoustical Society of America 101 (1997) 1779–1789.

[5] E.E. Ungar, Fundamentals of statistical energy analysis of vibrating systems, US Air Force AFFDL-TR 66–52,

April, 1966.

[6] A.J. Kean, W.G. Price, Statistical energy analysis of strongly coupled systems, Journal of Sound and Vibration 117

(1987) 363–386.

[7] F.F. Yap, J. Woodhouse, Investigation of damping effects on statistical energy analysis of coupled structures,

Journal of Sound and Vibration 197 (1996) 351–371.

[8] C. Fredo, Statistical Energy Analysis and the Individual Case, Ph.D.Thesis, Chalmers University of Technology,

Sweden, 1995.

[9] S. Finnveden, Energy flows within a three element structure with statistical description of the design parameters,

Internoise90, Gothenburg, Sweden, August, 1990.

[10] B.R. Mace, P.J. Shorter, Irregularity, damping, and coupling strength in sea, IUTAM Symposium on Statistical

Energy Analysis, Southampton, UK, 8–11 July, 1997.

[11] B.R. Mace, J. Rosenberg, The sea of two coupled plates: an investigation into the effects of subsystem irregularity,

Journal of Sound and Vibration 212 (1998) 395–415.

[12] R.S. Ming, J. Pan, The limitation in the sea prediction of power transmission and energy distribution, Fifth

International Congress on Sound and Vibration, Adelaide, Australia, December, 1997.

[13] W.S. Park, D.J. Thompson, N.S. Ferguson, Sources of error and confidence intervals for SEA parameters,

NOVEM Meeting, Lyon, France, September, 2000.

[14] F.J. Fahy, A.D. Mohammed, A study of uncertainty in applications of sea to coupled beam and plate systems, Part

I: computational experiments, Journal of Sound and Vibration 158 (1992) 45–67.

[15] B.R. Mace, The statistical energy analysis of two continuous one-dimensional subsystems, Journal of Sound and

Vibration 166 (1993) 429–461.

[16] B.R. Mace, On the statistical energy analysis hypothesis of coupling power proportionality and some implications

of its failure, Journal of Sound and Vibration 178 (1994) 95–112.

[17] S. Finnveden, Ensemble averaged vibration energy flows in a three-element structure, Journal of Sound and

Vibration 187 (1995) 495–529.

[18] S. Finnveden, Coupling strength criterion for the modal approach to statistical energy analysis of spring coupled

elements, Internoise98, Christchurch, New Zealand, 16–18 November, 1998.

[19] R.S. Langley, A wave intensity technique for the analysis of high frequency vibration, Journal of Sound and

Vibration 159 (1992) 485–502.

[20] R.S. Langley, A.N. Bercin, Wave intensity analysis of high frequency vibrations, Philosophical Transactions Royal

Society London A346 (1994) 489–499.

[21] H. Nishino, M. Ohlrich, Prediction of medium frequency vibration by wave intensity analysis, NOVEM Meeting,

Lyon, France, September, 2000.

ARTICLE IN PRESS

L. Maxit, J.-L. Guyader / Journal of Sound and Vibration 265 (2003) 337–358 357



[22] J.-G. Ih, K.S. Chae, Use of the ray tracing method for predicting the vibration energy distribution in the thin plate

at high frequencies, NOVEM Meeting, Lyon, France, September, 2000.

[23] E.K. Dimitriadis, A.D. Pierce, Analytical solution for the power exchange between strongly coupled plates

under random excitation: a test of statistical energy analysis concepts, Journal of Sound and Vibration 123 (1988)

397–412.

[24] C. Boisson, J.-L. Guyader, C. Lesueur, !Etude num!erique de la transmission d’!energie vibratoire entre structures

assembl!ees: cas d’assemblages en L, T et +, Acustica 58 (1985) 223–233.

[25] G. Fortunato, K. De Langhe, The influence of boundary conditions on sea parameters in the low and high

frequency range, Sixth International Congress on Sound and Vibration, Copenhagen, Denmark, 5–8 July, 1999.

[26] R.S. Langley, A general derivation of the statistical energy analysis equations for coupled dynamic systems,

Journal of Sound and Vibration 135 (1989) 499–508.

[27] H.G. Davies, Random vibration of distributed systems strongly coupled at discrete points, The Journal of the

Acoustical Society of America 54 (1973) 507–515.

[28] G. Maidanik, J. Dickey, Modal and wave approaches to the statistical energy analysis (SEA), The Winter Annual

Meeting of the American Society of Mechanical Engineers, Massachusetts USA, 13–18 December, 1987.

[29] B.R. Mace, Energy flow and s. e.a. at low modal overlap, Fifth International Congress on Sound and Vibration,

Adelaide, Australia, December, 1997.

[30] T.D. Scharton, R.H. Lyon, Power flow and energy sharing in random vibration, The Journal of the Acoustical

Society of America 43 (1968) 1332–1343.

[31] L. Maxit, J.-L. Guyader, Structural vibration analysis of the CLIO II firewall using SEA model and CLF-DMF

technique, NOVEM Meeting, Lyon, France, September, 2000.

[32] J.-L. Guyader, State of the art of energy methods used for vibro acoustic predictions, Sixth International Congress

on Sound and Vibration, Copenhagen, Denmark, 5–8 July, 1999.

[33] W. Soedel, Vibrations of Shells and Plates, 2nd edition, Marcel Dekker, New York, 1993.

ARTICLE IN PRESS

L. Maxit, J.-L. Guyader / Journal of Sound and Vibration 265 (2003) 337–358358


	Extension of SEA model to subsystems with non-uniform modal energy distribution
	Introduction
	Dual modal formulation
	Coupling of two continuous mechanical systems

	Reformulation of SEA model without equipartition assumption
	Modal energy equations
	Relations between SEA and SmEdA

	Some examples
	Coupling of subsystems with low modal overlap
	Two subsystems
	Multiple subsystems

	Heterogeneous subsystems
	Case of localized excitation

	Conclusions
	Acknowledgements
	Modal information for the L-shaped plates
	References


